Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex.
نویسندگان
چکیده
Anatomical alterations in the medial prefrontal cortex (mPFC) are associated with hypothalamopituitary adrenal (HPA) axis dysregulation, altered stress hormone levels, and psychiatric symptoms of stress-related mental illnesses. Functional imaging studies reveal impairment and shrinkage of the mPFC in such conditions, and these findings are paralleled by experimental studies showing dendritic retraction and spine loss following repeated stress in rodents. Here we extend this characterization to how repeated stress affects dendritic spine morphology in mPFC through the utilization of an automated approach that rapidly digitizes, reconstructs three dimensionally, and calculates geometric features of neurons. Rats were perfused after being subjected to 3 weeks of daily restraint stress (6 hours/day), and intracellular injections of Lucifer Yellow were made in layer II/III pyramidal neurons in the dorsal mPFC. To reveal spines in all angles of orientation, deconvolved high-resolution confocal laser scanning microscopy image stacks of dendritic segments were reconstructed and analyzed for spine volume, surface area, and length using a Rayburst-based automated approach (8,091 and 8,987 spines for control and stress, respectively). We found that repeated stress results in an overall decrease in mean dendritic spine volume and surface area, which was most pronounced in the distal portion of apical dendritic fields. Moreover, we observed an overall shift in the population of spines, manifested by a reduction in large spines and an increase in small spines. These results suggest a failure of spines to mature and stabilize following repeated stress and are likely to have major repercussions on function, receptor expression, and synaptic efficacy.
منابع مشابه
Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats
Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...
متن کاملRepeated stress induces dendritic spine loss in the rat medial prefrontal cortex.
The prefrontal cortex (PFC) plays an important role in higher cognitive processes, and in the regulation of stress-induced hypothalamic-pituitary-adrenal (HPA) activity. Here we examined the effect of repeated restraint stress on dendritic spine number in the medial PFC. Rats were perfused after receiving 21 days of daily restraint stress, and intracellular iontophoretic injections of Lucifer Y...
متن کاملMild, short-term stress alters dendritic morphology in rat medial prefrontal cortex.
Prefrontal cortex is a target for glucocorticoids, shows neurochemical changes in response to stress and mediates many of the behaviors that are altered by chronic corticosterone administration. Three weeks of either daily corticosterone injections or 3 h daily restraint stress result in dendritic changes in pyramidal neurons in medial prefrontal cortex. Interestingly, vehicle injection results...
متن کاملChronic stress alters dendritic morphology in rat medial prefrontal cortex.
Chronic stress produces deficits in cognition accompanied by alterations in neural chemistry and morphology. Medial prefrontal cortex is a target for glucocorticoids involved in the stress response. We have previously demonstrated that 3 weeks of daily corticosterone injections result in dendritic reorganization in pyramidal neurons in layer II-III of medial prefrontal cortex. To determine if s...
متن کاملEvidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex.
Cognitive functions that require the prefrontal cortex are highly sensitive to aging in humans, nonhuman primates, and rodents, although the neurobiological correlates of this vulnerability remain largely unknown. It has been proposed that dendritic spines represent the primary site of structural plasticity in the adult brain, and recent data have supported the hypothesis that aging is associat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 507 1 شماره
صفحات -
تاریخ انتشار 2008